Issue 26, 2021

Bis(NHC)-Pd-catalyzed one-pot competitive C–C*C–C, C–C*C–O, C–C*C–N, and C–O*C–N cross-coupling reactions on an aryl di-halide catalyzed by a homogenous basic ionic liquid (TAIm[OH]) under base-free, ligand-free, and solvent-free conditions

Abstract

Bis(NHC)-Pd-catalyzed competitive asymmetrical C–C*C–C, C–C*C–O, C–C*C–N, and O–C*C–N cross-coupling reactions were performed via the one-pot strategy in the presence of a new ionic liquid, which played the roles of solvent, base, and ligand simultaneously. The ionic liquid was prepared based on a methyl imidazolium moiety with hydroxyl counter anions via a Hofmann elimination on a 1,3,5-triazine framework (TAIm[OH]). Pd ions could be efficiently coordinated through the bis(NHC)-ligand moiety in the ionic liquid. Based on differences in the competitive kinetics of C–C cross-coupling reactions (Heck, Suzuki, and Sonogashira) with C–N and C–O cross-coupling reactions, and also differences in the kinetics of aryl halides, the coupling reactions could be selectively performed with a low amount of by-products. The competitive cross-coupling reactions were thus performed with high selectivity under mild reaction conditions.

Graphical abstract: Bis(NHC)-Pd-catalyzed one-pot competitive C–C*C–C, C–C*C–O, C–C*C–N, and C–O*C–N cross-coupling reactions on an aryl di-halide catalyzed by a homogenous basic ionic liquid (TAIm[OH]) under base-free, ligand-free, and solvent-free conditions

Supplementary files

Article information

Article type
Paper
Submitted
05 Jan 2021
Accepted
23 May 2021
First published
25 May 2021

New J. Chem., 2021,45, 11662-11671

Bis(NHC)-Pd-catalyzed one-pot competitive C–C*C–C, C–C*C–O, C–C*C–N, and C–O*C–N cross-coupling reactions on an aryl di-halide catalyzed by a homogenous basic ionic liquid (TAIm[OH]) under base-free, ligand-free, and solvent-free conditions

Y. Zhu, G. Xu and M. Kazemnejadi, New J. Chem., 2021, 45, 11662 DOI: 10.1039/D1NJ00067E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements