The dynamics and self-assembly of chemically self-propelled sphere dimers†
Abstract
The dynamics of chemically powered sphere dimers at the micro- and nano-scales confined in a quasi-two-dimensional geometry are investigated. The dimer consists of a Janus particle and a non-catalytic sphere. A chemical reaction taking place on the catalytic surface of the Janus particle creates asymmetric concentration gradients that give rise to the self-propulsion of both rotation and translation of the dimer. Due to the chemical interactions, ensembles of dimers spontaneously form anti-parallel aligned doublets that exhibit the same rotation direction and lose translational motion. The chirality of the dimer plays an important role in the process of doublet formation. The study displays new collective dynamics and structures when both translational and rotational self-propulsion occur.