Issue 4, 2021

Size-focusing results in highly photoluminescent sulfur quantum dots with a stable emission wavelength

Abstract

Sulfur quantum dots (SQDs) are a new kind of functional nanomaterial, but several challenges still exist in relation to their synthesis and application, such as low-yield and time-consuming synthetic methods, low photoluminescence quantum yields (PLQYs), and the non-selectivity of their detection mechanisms. Herein, we report the drastic enhancement of the fluorescence performance of water-soluble SQDs via the one-pot synthesis of size-focusing QDs using ultrasound microwave radiation. The synthetic period has been greatly shortened to 2 h via the present process. Notably, the proposed SQDs exhibit a highly stable emission wavelength with a record high PLQY of 58.6%. The mechanistic study indicates that size-focusing is a key factor relating to the proposed high-performance SQDs. As they also have robust stability, the proposed SQDs show a wide range of potential applications. Inspired by the characteristic properties of the SQDs and specific analytes, a simple SQD-based fluorescence sensing platform, via a redox-reaction-mediated mechanism, has been successfully developed for the rapid and selective detection of Ce(IV). In addition, this system has been effectively applied to some Ce(IV)-related biological assays, such as ascorbic acid (AA) analysis. This work is an important breakthrough in the SQD field, opening up avenues for solving the challenging problems relating to SQD-based probes, enriching the fundamental understanding of them, and greatly extending their applications, especially in biomedicine.

Graphical abstract: Size-focusing results in highly photoluminescent sulfur quantum dots with a stable emission wavelength

Supplementary files

Article information

Article type
Paper
Submitted
10 Oct 2020
Accepted
02 Jan 2021
First published
02 Jan 2021

Nanoscale, 2021,13, 2519-2526

Size-focusing results in highly photoluminescent sulfur quantum dots with a stable emission wavelength

Y. Sheng, Z. Huang, Q. Zhong, H. Deng, M. Lai, Y. Yang, W. Chen, X. Xia and H. Peng, Nanoscale, 2021, 13, 2519 DOI: 10.1039/D0NR07251F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements