Label-free separation of nanoscale particles by an ultrahigh gradient magnetic field in a microfluidic device†
Abstract
The need for fast and accurate analysis of low-concentration species is ubiquitous nowadays. The separation and purification techniques restrict the highly sensitive detection of low-abundance nanoparticles. On the other hand, the commonly used separation techniques of labeling procedures limit their implementation in various applications. We report a microfluidic system with ultrahigh magnetic field for the label-free separation of nanoscale particles. Using high-permeability alloys and on-chip integrated magnetic micro-pole arrays, the external strong magnetic field can be conducted into the microfluidic device to form a magnetic field of high intensity and gradient, therefore separating particles of nanometer size with high efficiency. An ultrahigh gradient magnetic field greater than 105 T m−1 can be generated in the separation channel. Moreover, a negative magnetophoretic technique to separate nanoparticles is established in this device. Then, the label-free separation of nanoparticles is achieved in this microfluidic system perfused by a ferrofluid with an extremely low concentration (0.01%). A mixture of 0.2 μm and 1 μm particles is used to verify the performance of the device, where the recovery rate of 0.2 μm particles is 88.79%, and the purity reaches 94.72%. Experimental results show that the device can efficiently separate nanoscale particles with ultrahigh resolution, and in future, it may develop into a versatile and robust tool for the separation and purification of the biological samples of nanometer size.