Issue 6, 2021

Newly discovered graphyne allotrope with rare and robust Dirac node loop

Abstract

Two-dimensional (2D) carbon allotropes with topologically nontrivial states are drawing considerable attention owing to their unique physical properties and great potential applications in the next generation of micro-nano devices. In contrast to the numerous Dirac points predicted in 2D carbon allotropes, systems featuring Dirac nodal lines (loops) are still quite rare. Here, by means of first-principles calculation, we report our newly discovered carbon monolayer 123-E8Y24-1 with robust Dirac nodal line states, which possesses a tetragonal lattice with P4/mmm symmetry and contains 8 sp2 carbon atoms (graphene: E8) and 24 sp carbon atoms (grapheyne: Y24) in the crystalline cell. This 2D material is as energetically stable as the recently experimentally synthesized β-graphdiyne, and it is further predicted to be dynamically, mechanically, and also thermodynamically stable. Owing to its intrinsic geometric characteristics, 123-E8Y24-1 also exhibits obvious Young's modulus anisotropy, with a sizable ratio between the maximum and minimum value of up to 5.8. Remarkably, 123-E8Y24-1 presents a semimetal nature and possesses Dirac nodal line states in the electronic band structure, and such behavior could be kept well under external strain between −10.0% and 8.0%. The electronic properties of 123-E8Y24-1 can be carefully confirmed by constructing a tight-binding (TB) model. The findings presented in this paper reveal a novel 2D Dirac nodal loop carbon sheet, providing a new candidate for carbon-based high-speed electronic devices.

Graphical abstract: Newly discovered graphyne allotrope with rare and robust Dirac node loop

Supplementary files

Article information

Article type
Paper
Submitted
25 Nov 2020
Accepted
19 Jan 2021
First published
19 Jan 2021

Nanoscale, 2021,13, 3564-3571

Newly discovered graphyne allotrope with rare and robust Dirac node loop

P. Yan, T. Ouyang, C. He, J. Li, C. Zhang, C. Tang and J. Zhong, Nanoscale, 2021, 13, 3564 DOI: 10.1039/D0NR08397F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements