Issue 11, 2021

Information processing using an integrated DNA reaction network

Abstract

Living organisms use interconnected chemical reaction networks (CRNs) to exchange information with the surrounding environment and respond to diverse external stimuli. Inspired by nature, numerous artificial CRNs with a complex information processing function have been recently introduced, with DNA as one of the most attractive engineering materials. Although much progress has been made in DNA-based CRNs in terms of controllable reaction dynamics and molecular computation, the effective integration of signal translation with information processing in a single CRN remains to be difficult. In this work, we introduced a stimuli-responsive DNA reaction network capable of integrated information translation and processing in a stepwise manner. This network is designed to integrate sensing, translation, and decision-making operations by independent modules, in which various logic units capable of performing different functions were realized, including information identification (YES and OR gates), integration (AND and AND-AND gates), integration-filtration (AND-AND-NOT gate), comparison (Comparator), and map-to-map analysis (Feynman gate). Benefitting from the modular and programmable design, continuous and parallel processing operations are also possible. With the innovative functions, we show that the DNA network is a highly useful addition to the current DNA-based CRNs by offering a bottom-up strategy to design devices capable of cascaded information processing with high efficiency.

Graphical abstract: Information processing using an integrated DNA reaction network

Supplementary files

Article information

Article type
Paper
Submitted
28 Dec 2020
Accepted
20 Feb 2021
First published
22 Feb 2021

Nanoscale, 2021,13, 5706-5713

Information processing using an integrated DNA reaction network

D. Huang, H. Han, C. Guo, X. Lin, D. Chen, S. Yang, Q. Yang and F. Li, Nanoscale, 2021, 13, 5706 DOI: 10.1039/D0NR09148K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements