Issue 22, 2021

Inverse-designed semiconductor nanocatalysts for targeted CO2 reduction in water

Abstract

The most commonly used photocatalyst for CO2 reduction is TiO2. However, this semiconductor material is far from being ideally suited for this purpose, owing to its inefficient energy harvesting (it absorbs in the UV), low reduction rates (it exhibits short carrier lifetimes), and lack of selectivity with respect to competing reactions (such as the nearly isoenergetic and kinetically more favourable water reduction). In this work we compile a wish-list of properties for the ideal photocatalyst (including high reaction selectivity, availability of multiple redox equivalents at one time, large contact area for CO2 adsorption with independently tunable band gap, and availability of electrons and holes at different locations on the surface for the two redox reactions to take place), and, using the principles of inverse design, we engineer a semiconductor nanostructure that not only meets all the necessary fundamental criteria to act as a catalyst for CO2 reduction, but also exhibits all the wish-list properties, as confirmed by our state-of-the-art atomistic semi-empirical pseudopotential modelling. The result is a potentially game-changing material.

Graphical abstract: Inverse-designed semiconductor nanocatalysts for targeted CO2 reduction in water

Supplementary files

Article information

Article type
Paper
Submitted
10 Mar 2021
Accepted
21 May 2021
First published
21 May 2021
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2021,13, 10024-10034

Inverse-designed semiconductor nanocatalysts for targeted CO2 reduction in water

M. Califano and Y. Zhou, Nanoscale, 2021, 13, 10024 DOI: 10.1039/D1NR01550H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements