Cluster defects in gibbsite nanoplates grown at acidic to neutral pH†
Abstract
Gibbsite [α-Al(OH)3] is the solubility limiting phase for aluminum across a wide pH range, and it is a common mineral phase with many industrial applications. The growth mechanism of this layered-structure material, however, remains incompletely understood. Synthesis of gibbsite at low to circumneutral pH yields nanoplates with substantial interlayer disorder. Here we examine defects in this material in detail, and the effects of recrystallization in highly alkaline sodium hydroxide solution at 80 °C. We employed a multimodal approach, including scanning electron microscopy, magic-angle spinning nuclear magnetic resonance (MAS-NMR), Raman and infrared spectroscopies, X-ray diffraction (XRD), and X-ray total scattering pair distribution function (XPDF) analysis to characterize the ageing of the nanoplates over several days. XRD and XPDF indicate that gibbsite nanoplates precipitated at circumneutral pH contain dense, truncated sheets imparting a local difference in interlayer distance. These interlayer defects appear well described by flat Al13 aluminum hydroxide nanoclusters nearly isostructural with gibbsite sheets present under synthesis conditions and trapped as interlayer inclusions during growth. Ageing at elevated temperature in alkaline solutions gradually improves crystallinity, showing a gradual increase in H-bonding between interlayer OH groups. Between 7 to 8 vol% of the initial gibbsite nanoparticles exhibit this defect, with the majority of differences disappearing after 2–4 hours of recrystallization in alkaline solution. The results not only identify the source of disorder in gibbsite formed under acidic/neutral conditions but also point to a possible cluster-mediated growth mechanism evident through inclusion of relict oligomers with gibbsite-like topology trapped in the interlayer spaces.