Issue 23, 2021

Co-assembly and multicomponent hydrogel formation upon mixing nucleobase-containing peptides

Abstract

Peptide-based hydrogels are physical gels formed through specific supramolecular self-assembling processes, leading to ordered nanostructures which constitute the water entrapping scaffold of the soft material. Thanks to the inherent properties of peptides, these hydrogels are highly considered in the biomedical domain and open new horizons in terms of application in advanced therapies and biotechnologies. The use of one, and only one, native peptide to formulate a gel is by far the most reported approach to design such materials, but suffers from several limitations, including in terms of mechanical properties. To improve peptide-based hydrogels interest and give rise to innovative properties, several strategies have been proposed in the recent years, and the development of multicomponent peptide-based hydrogels appears as a promising and relevant strategy. Indeed, mixing two or more compounds to develop new materials is a much-used approach that has proven its effectiveness in a wide variety of domains, including polymers, composites and alloys. While still limited to a handful of examples, we would like to report herein on the formulation and the comprehensive study of multicomponent hybrid DNA-nucleobase/peptide-based hydrogels using a multiscale approach based on a large panel of analytical techniques (i.e., rheometry, proton relaxometry, SAXS, electronic microscopy, infrared, circular dichroism, fluorescence, Thioflavin T assays). Among the six multicomponent systems studied, the results highlight the synergistic role of the presence of the two complementary DNA-nucleobases (i.e., adenine/thymine and guanine/cytosine) on the co-assembling process from structural (e.g., morphology of the nanoobjects) to physicochemical (e.g., kinetics of formation, fluorescence properties) and mechanical (e.g., stiffness, resistance to external stress) properties. All the data confirm the relevance of the multicomponent peptide-based approach in the design of innovative hydrogels and bring another brick in the wall of the understanding of these complex and promising systems.

Graphical abstract: Co-assembly and multicomponent hydrogel formation upon mixing nucleobase-containing peptides

Supplementary files

Article information

Article type
Paper
Submitted
16 Apr 2021
Accepted
27 May 2021
First published
07 Jun 2021
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2021,13, 10566-10578

Co-assembly and multicomponent hydrogel formation upon mixing nucleobase-containing peptides

T. Giraud, S. Bouguet-Bonnet, M. Stébé, L. Richaudeau, G. Pickaert, M. Averlant-Petit and L. Stefan, Nanoscale, 2021, 13, 10566 DOI: 10.1039/D1NR02417E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements