Crystal capillary origami capsule with self-assembled nanostructures†
Abstract
The self-assembling mechanism of elasto-capillaries opens new applications in micro and nanotechnology by providing 3D assembly structures with 2D planar unit cells, so-called capillary origami. To date, the final structure has been designed based on the predetermined shape and size of the unit cell. Here, we show that plate-like salt crystallites grow and cover the emulsion interface, which is driven by Laplace pressure. Eventually, it creates a spherical capsule with self-assembled nanostructures. The capsule and the crystallite are investigated by scanning electron microscopy and X-ray diffraction analysis. To explain the mechanism, we develop a theoretical model to estimate the capsule size, the shell thickness, and the conditions necessary to form the shell based on a thin-walled pressure vessel. The proposed crystal capillary origami can fabricate a three-dimensional self-assembled salt capsule without any complicated procedures. We believe that it can offer a new physicochemical avenue for the spontaneous and facile fabrication of water-soluble carrier particles.