Nano-chevron quantum dot for spin-qubit applications
Abstract
We study the theoretical properties of a parabolic hBN/MoS2/hBN heterostructure quantum dot potential generated via electrostatic gates and its interaction with a cobalt nano chevron. We demonstrate that such an example system can undergo electric dipole spin resonance for a single electron isolated to the K′ valley within the MoS2 monolayer, and such a system can achieve pi-rotation times of approximately 5.5 ns under the influence of a 20.89 GHz driving field. Our proposed system requires operating conditions easily achievable with current experimental methods and would allow for the all-electrical control of a spin-qubit within an MoS2 device. Our results show that such a system is experimentally feasible and would have comparable properties to that of more traditional silicon based spin-qubits. Furthermore, the design of the device can be applied to other material systems beyond MoS2 and cobalt. In theory, the proposed structure could make use of any 2D material that experiences strong proximity exchange interactions with other magnetic materials, which makes our proposed design highly general.