Large-area fabrication of superhydrophobic micro-conical pillar arrays on various metallic substrates†
Abstract
Superhydrophobic micro-conical pillar arrays have huge application prospects, from anti-icing to oil/water separation, corrosion resistance, and water droplet manipulation. However, there is still a lack of versatile methods with high processing efficiency to fabricate superhydrophobic micro-conical pillar arrays on various metallic substrates. Herein, a nanosecond laser ablation technology with versatility and high processing efficiency was developed to fabricate large-area superhydrophobic micro-conical pillar arrays. The simulation and experiments indicated that the height and the pillar inclination angle of micro-conical pillars could be easily controlled by adjusting the nanosecond laser parameters or the tilted angles of metallic substrates. The fabricated superhydrophobic micro-conical pillar arrays not only showed good mechanical robustness and chemical stability but also easily reduced the contact time for an impinging water droplet, showing potential application prospects in anti-icing from freezing rain. This kind of method with versatility and high processing efficiency will promote the practical applications of superhydrophobic micro-conical arrays.