Facile fabrication of soy protein isolate-functionalized nanofibers with enhanced biocompatibility and hemostatic effect on full-thickness skin injury†
Abstract
Extensive full-thickness skin defect lacks self-healing ability. Tissue engineering wound dressing is considered as the most promising approach to promote wound healing. In this study, a series of biocompatible and hemostatic nanofiber dressings were fabricated. Soy protein isolate (SPI) and poly(L-lactic acid) (PLLA) solutions were mixed in certain proportions for high-voltage electrospinning. The obtained products were coded as SPNF-n (n = 100, 80, 60 and 40, corresponding to the weight percentage of PLLA solution). We found that SPNF-n (n = 100, 80, 60 and 40) could facilitate the adhesion and spread of L929 cells. In particular, SPNF-80 was capable of promoting fibroblast proliferation and diminishing inflammation. Compared with the neat PLLA film (SPNF-100), the biosafety and hemostatic effect of SPNF-80 got significantly improved. The hemostatic effect of SPNF-80 was comparable with that of a commercial gelatin sponge. In vivo wound healing assay demonstrated that SPNF-80 could accelerate the wound healing process by enhancing vascularization, re-epithelization and collagen formation. In conclusion, our results reveal that SPNF-n has good biocompatibility and hemostatic effect, and exhibits great application potential in wound healing.