CrSbS3 monolayer: a potential phase transition ferromagnetic semiconductor†
Abstract
Two dimensional intrinsic ferromagnetic semiconductors with controllable magnetic phase transition are highly desirable for spintronics. Nevertheless, reports on their successful experimental realization are still rare. Herein, based on first principles calculations, we propose to achieve such a functional material, namely CrSbS3 monolayer by exfoliating from its bulk crystal. Intrinsic CrSbS3 monolayer is a ferromagnetic half semiconductor with a moderate bandgap of 1.90 eV. It features an intriguing magnetic phase transition from ferromagnetic to antiferromagnetic when applying a small compressive strain (∼2%), making it ideal for fabricating strain-controlled magnetic switches or memories. In addition, the predicted strong anisotropic absorption of visible light and small effective masses make the CrSbS3 monolayer promising for optoelectronic applications.