Self-assembled rhomboidal ammonia monolayer confined in two vertically stacked graphene oxide/graphene nanosheets†
Abstract
Confined water molecules have attracted widespread research interest due to their versatile phase behaviors. Ammonia (NH3, isoelectronic with water) molecules are also expected to realize the delicate self-assembled hydrogen-bonded network like water in confinement. Here, the structures and phase behavior of NH3 monolayers confined in two structurally symmetrical graphene oxide (GO) or graphene (G) nanosheets are investigated using first-principles calculations and ab initio molecular dynamics simulations. A highly ordered new rhomboidal phase with all NH3 molecules adopting a Y-shaped configuration, in which one N–H bond is parallel to the confining planes and two other N–H bonds point to the top/bottom GO/G layers, respectively, was discovered at low temperature, resulting from the symmetrical confinement and subtle interlayer/intermolecular interactions. Remarkably, this new phase is so stable that a quite large strain is needed to destroy it. At room temperature, these NH3 monolayers behave like a liquid. These rhomboidal NH3 monolayers confined in GO/G nanosheets not only offer diverse hydrogen-bonded networks but also possess potential piezoelectricity for future device applications.