Layer-dependent interface reconstruction and strain modulation in twisted WSe2†
Abstract
Twistronics has emerged as one of the most attractive playgrounds for manipulating the interfacial structures and electronic properties of two-dimensional materials. However, the layer-dependent lattice reconstruction and resulted strain distribution in marginally twisted transition metal dichalcogenides still remain elusive. Here we report a systematic study by both electron diffraction quantification and atomic-resolution imaging on the interface reconstruction of twisted WSe2, which shows a strong dependence on the constituent layer numbers and twist angles. The competition between the interlayer interaction, which varies with local atomic configurations, and the intralayer elastic deformation, related to the layer thickness, leads to rich superlattice motifs and strain modulation patterns, i.e. triangular for odd and kagome-like textures for even layer numbers, against the rigid stacking moiré model. The strain effects of small twist angles are further demonstrated by electrical transport measurements, manifesting intriguing conducting states at low temperatures beyond the flat band features of large twist angles. Our work not only provides a comprehensive understanding of layer-dependent twist structures, but also may shed light on the future design of twistronic devices.