Trans/cis-stereoisomers of triterpenoid-substituted tetraphenylethene: aggregation-induced emission, aggregate morphology, and mechano-chromism†
Abstract
Trans/cis stereoisomers with multiple functionalities play an important role in chemistry and materials science. In this work, two pure stereoisomers (trans- and cis-TPE-2GA) of the tetraphenylethene (TPE) derivatives bi-substituted by a bio-resourced rigid triterpenoid and glycyrrhetinic acid (GA) were synthesized and characterized by 1D and 2D NMR, single crystal analysis, and HR-MS. Both trans- and cis-TPE-2GA are thermally stable even on heating at 160 °C for 30 min, whereas they can undergo trans-to-cis and cis-to-trans photoisomerization under similar UV illumination. The introduction of triterpenoid units endowed isomers with different aggregation-induced emission (AIE) and self-assembly properties and distinct crystallinity. Trans- and cis-TPE-2GA exhibit different evolution of the fluorescent intensity in water/acetone mixture with the increase in the water fraction, which are closely related to the different evolution of the aggregate morphology, from nanorods to nanospheres for trans-TPE-2GA, while from twisted ribbons, to nanotubes and nanospheres for cis-TPE-2GA. In the solid state, the mechano-chromic properties are shown by cis-TPE-2GA, while no mechano-chromic effect is observed for trans-TPE-2GA under the same grinding conditions because of their distinct crystallinity. Finally, theoretical calculation and photophysical study demonstrate that despite both isomers being assigned to the charge transfer state emission, cis-TPE-2GA has a slightly lower energy gap, a higher quantum yield, and a longer lifetime in comparison with trans-TPE-2GA, which explained their difference in the fluorescence and mechano-chromic properties. This work may improve the understanding of the TPE-based trans and cis stereoisomers, which will be beneficial in the design of novel TPE-based functional materials.