Issue 41, 2021

Molecular simulation of the diffusion mechanism of nanorods in cross-linked networks

Abstract

We study the diffusion of rod-shaped nanocarriers with different rigidities and aspect ratios in cross-linked networks using coarse-grained molecular dynamics (CGMD) simulations. The diffusivity of the nanorods increases with a reduction in the rigidities of the nanorods and network, as well as with an increasing aspect ratio with respect to the same volume fraction of the nanorods. The nanorods show an anisotropic diffusion pathway through translocating along their major axes at short time scales, and the anisotropy of diffusion decreases at long time scales. Meanwhile, the diffusion of the nanorods shows a sub-diffusion regime that deviates from Brownian motion in most cases due to the trapping of the nanorods in a cage composed of the network. The nanorod could hop when it escapes from the cage and the hopping behavior depends on the rigidities of both the nanorod and network, as well as the local network density. The rotational motion of the trapped nanorod also enhances the probability of hopping. Our results may help in the understanding of the microscopic mechanism for the diffusion of rod-shaped and other relevant nanocarriers, in a cross-linked network environment.

Graphical abstract: Molecular simulation of the diffusion mechanism of nanorods in cross-linked networks

Supplementary files

Article information

Article type
Paper
Submitted
16 Aug 2021
Accepted
01 Sep 2021
First published
01 Sep 2021

Nanoscale, 2021,13, 17404-17416

Molecular simulation of the diffusion mechanism of nanorods in cross-linked networks

B. Zhao, B. Li and X. Shi, Nanoscale, 2021, 13, 17404 DOI: 10.1039/D1NR05368J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements