Chemotherapeutic drug-induced immunogenic cell death for nanomedicine-based cancer chemo–immunotherapy
Abstract
Chemotherapy has been a conventional paradigm for cancer treatment, and multifarious chemotherapeutic drugs have been widely employed for decades with significant performances in suppressing tumors. Moreover, some of the antitumor chemotherapeutic agents, such as doxorubicin (DOX), oxaliplatin (OXA), cyclophosphamide (CPA) and paclitaxel (PTX), can also tackle tumors through the induction of immunogenic cell death (ICD) in tumor cells to trigger specific antitumor immune responses of the body and improve chemotherapy efficacy. In recent years, chemo–immunotherapy has attracted increasing attention as one of the most promising combination therapies to struggle with malignant tumors. Many effective antitumor therapies have benefited from the successful induction of ICD in tumors, which could incur the release of endogenous danger signals and tumor-associated antigens (TAAs), further stimulating antigen-presenting cells (APCs) and ultimately initiating efficient antitumor immunity. In this review, several well-characterized damage-associated molecular patterns (DAMPs) were introduced and the progress of ICD induced by representative chemotherapeutic drugs for nanomedicine-based chemo–immunotherapy was highlighted. In addition, the combination strategies involving ICD cooperated with other therapies were discussed. Finally, we shared some perspectives in chemotherapeutic drug-induced ICD for future chemo–immunotherapy. It was hoped that this review would provide worthwhile presentations and enlightenments for cancer chemo–immunotherapy.
- This article is part of the themed collection: Recent Review Articles