Issue 6, 2021

Highly diastereo- and enantioselective organocatalytic synthesis of trifluoromethylated erythritols based on the in situ generation of unstable trifluoroacetaldehyde

Abstract

Thus far, only a few methods for the asymmetric synthesis of erythritols bearing a trifluoromethyl group have been developed, and these methods present serious disadvantages such as the requirement of multiple steps for the preparation of their starting materials, low stereoselectivity, and the use of highly toxic reagents. Herein, we have developed a highly diastereo- and enantioselective organocatalytic method to synthesise erythritols bearing a trifluoromethyl group using (1) a commercially available organocatalyst to produce unstable trifluoroacetaldehyde in situ from its corresponding hemiacetal, followed by the simultaneous asymmetric carbon–carbon bond-forming reaction of the organocatalyst with an in situ-generated chiral enamine derived from 2,2-dimethyl-1,3-dioxane-5-one to obtain the corresponding aldol product in good yield (65–80%) with high diastereoselectivity (up to 94% de) and excellent enantioselectivity (up to >98% ee), (2) the highly diastereoselective reduction of the ketone moiety in the aldol product (up to 98% de), and (3) the deprotection of the acetal moiety.

Graphical abstract: Highly diastereo- and enantioselective organocatalytic synthesis of trifluoromethylated erythritols based on the in situ generation of unstable trifluoroacetaldehyde

Supplementary files

Article information

Article type
Paper
Submitted
10 Oct 2020
Accepted
07 Dec 2020
First published
08 Dec 2020

Org. Biomol. Chem., 2021,19, 1296-1304

Highly diastereo- and enantioselective organocatalytic synthesis of trifluoromethylated erythritols based on the in situ generation of unstable trifluoroacetaldehyde

K. Funabiki, T. Gotoh, R. Kani, T. Inuzuka and Y. Kubota, Org. Biomol. Chem., 2021, 19, 1296 DOI: 10.1039/D0OB02067B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements