Issue 2, 2021

Kinetic and structure–activity studies of the triazolium ion-catalysed benzoin condensation

Abstract

Steady-state kinetic and structure–activity studies of a series of six triazolium-ion pre-catalysts 2a–2f were investigated for the benzoin condensation. These data provide quantitative insight into the role of triazolium N-aryl substitution under synthetically relevant catalytic conditions in a polar solvent environment. Kinetic behaviour was significantly different to that previously reported for a related thiazolium-ion pre-catalyst 1, with the observed levelling of initial rate constants to νmax at high aldehyde concentrations for all triazolium catalysts. Values for νmax for 2a–2f increase with electron withdrawing N-aryl substituents, in agreement with reported optimal synthetic outcomes under catalytic conditions, and vary by 75-fold across the series. The levelling of rate constants supports a change in rate-limiting step and evidence supports the assignment of the Breslow-intermediate forming step to the plateau region. Correlation of νmax reaction data yielded a positive Hammett ρ-value (ρ = +1.66) supporting the build up of electron density adjacent to the triazolium N-Ar in the rate-limiting step favoured by electron withdrawing N-aryl substituents. At lower concentrations of aldehyde, both Breslow-intermediate and benzoin formation are partially rate-limiting.

Graphical abstract: Kinetic and structure–activity studies of the triazolium ion-catalysed benzoin condensation

Supplementary files

Article information

Article type
Paper
Submitted
05 Nov 2020
Accepted
11 Dec 2020
First published
14 Dec 2020
This article is Open Access
Creative Commons BY license

Org. Biomol. Chem., 2021,19, 387-393

Kinetic and structure–activity studies of the triazolium ion-catalysed benzoin condensation

R. S. Massey, J. Murray, C. J. Collett, J. Zhu, A. D. Smith and A. C. O'Donoghue, Org. Biomol. Chem., 2021, 19, 387 DOI: 10.1039/D0OB02207A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements