Issue 42, 2021

Organocatalytic diastereo- and enantioselective oxa-hetero-Diels–Alder reactions of enones with aryl trifluoromethyl ketones for the synthesis of trifluoromethyl-substituted tetrahydropyrans

Abstract

Tetrahydropyran derivatives are found in bioactives, and introduction of the trifluoromethyl group into molecules often improves biofunctions. Here we report diastereo- and enantioselective oxa-hetero-Diels–Alder reactions catalyzed by amine-based catalyst systems that afford trifluoromethyl-substituted tetrahydropyranones. Catalyst systems and conditions suitable for the reactions to provide the desired diastereomer products with high enantioselectivities were identified, and various trifluoromethyl-substituted tetrahydropyranones were synthesized with high diastereo- and enantioselectivities. Mechanistic investigation suggested that the reactions involve a [4 + 2] cycloaddition pathway, in which the enamine of the enone acts as the diene and the ketone carbonyl group of the aryl trifluoromethyl ketone acts as the dienophile. In this study, tetrahydropyran derivatives with the desired stereochemistry that are difficult to synthesize by previously reported methods were concisely obtained, and the range of tetrahydropyran derivatives that can be synthesized was expanded.

Graphical abstract: Organocatalytic diastereo- and enantioselective oxa-hetero-Diels–Alder reactions of enones with aryl trifluoromethyl ketones for the synthesis of trifluoromethyl-substituted tetrahydropyrans

Supplementary files

Article information

Article type
Paper
Submitted
17 Sep 2021
Accepted
04 Oct 2021
First published
06 Oct 2021

Org. Biomol. Chem., 2021,19, 9242-9250

Organocatalytic diastereo- and enantioselective oxa-hetero-Diels–Alder reactions of enones with aryl trifluoromethyl ketones for the synthesis of trifluoromethyl-substituted tetrahydropyrans

M. Pasha and F. Tanaka, Org. Biomol. Chem., 2021, 19, 9242 DOI: 10.1039/D1OB01844B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements