Issue 18, 2021

Reprocessable covalent adaptable networks with excellent elevated-temperature creep resistance: facilitation by dynamic, dissociative bis(hindered amino) disulfide bonds

Abstract

Conventionally cross-linked polymer networks known as thermosets contain permanent cross-links which prevent their recyclability, leading to major sustainability and environmental challenges. To overcome this problem, covalent adaptable networks (CANs) containing dynamic covalent bonds have been studied over the past two decades. Because of their dynamic nature, CANs are capable of undergoing reversible or exchange reactions rendering them reprocessable, offering a sustainable alternative to thermosets. However, unlike thermosets with static cross-links, CANs are considered to be highly susceptible to creep especially at elevated temperature, which limits their utility in many high-value applications. Here, we use the dynamic cross-linker bis(2,2,6,6-tetramethylpiperidin-1-yl) disulfide methacrylate (BiTEMPS methacrylate) in the free radical polymerization of reprocessable poly(hexyl methacrylate) networks with different degrees of cross-linking. Full recovery of cross-link density was achieved after multiple recycling steps. We show that BiTEMPS chemistry is capable of arresting creep at elevated temperature up to 90 °C. Poly(hexyl methacrylate) networks containing 5 mol% BiTEMPS exhibited almost no creep with strain values of 0.07% and 0.38% at 70 °C and 90 °C, respectively, after 13.9 h of continuous, 3 kPa shear stress. This excellent creep resistance is comparable to the creep response of static networks. The temperature-dependent viscosity of a BiTEMPS-cross-linked dissociative network calculated from creep data followed an Arrhenius relationship. The viscous flow activation energy from creep and the stress relaxation activation energy were very similar to the bond dissociation energy of disulfide bonds in BiTEMPS, indicating that the creep and stress relaxation mechanisms are both dominated by the dynamic chemistry in the network. This work indicates that BiTEMPS chemistry offers a simple method to synthesize CANs with excellent elevated-temperature creep resistance while achieving full recovery of cross-link density after recycling.

Graphical abstract: Reprocessable covalent adaptable networks with excellent elevated-temperature creep resistance: facilitation by dynamic, dissociative bis(hindered amino) disulfide bonds

Supplementary files

Article information

Article type
Paper
Submitted
10 Feb 2021
Accepted
12 Apr 2021
First published
14 Apr 2021

Polym. Chem., 2021,12, 2760-2771

Reprocessable covalent adaptable networks with excellent elevated-temperature creep resistance: facilitation by dynamic, dissociative bis(hindered amino) disulfide bonds

M. A. Bin Rusayyis and J. M. Torkelson, Polym. Chem., 2021, 12, 2760 DOI: 10.1039/D1PY00187F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements