Issue 5, 2021

Ag(i) and Cu(i) cyclic-triimidazole coordination polymers: revealing different deactivation channels for multiple room temperature phosphorescences

Abstract

The remarkable emissive properties of cyclic triimidazole (TT), showing crystallization-induced emissive behavior and, in particular, room temperature phosphorescence (RTP), are here combined with its versatility in assembling coordination compounds. A series of Ag(I) coordination polymers (CPs), comprising a 1D chain ([Ag(TT)I]n, 1-Ag) and 3D networks ([Ag(TT)Cl]n, 2-Ag, and [Ag3(TT)4]n(NO3)3n·6nH2O, 3-Ag), have been synthesized and their photophysical behavior thoroughly investigated. They show both fluorescence and multiple RTPs, all simultaneously activated but varied in intensity by changing the excitation energy. Based on DFT/TDDFT calculations and analysis of the X-ray crystal structures, the origin of the different phosphorescences has been ascribed to H-aggregation of the ligand (in 1-Ag and 2-Ag), intermolecular electronic coupling by an extrinsic heavy-atom effect (in 1-Ag) and ligand-centered emissive states (in all three compounds). Comparison with isostructural 1-Cu and 2-Cu CPs reveals that, different from the Ag(I) analogues, non-thermally equilibrated XMLCT and ligand-centered emissive states are active. The isostructural Ag(I) and Cu(I) compounds show comparable emission efficiency, while the phosphorescence lifetimes are longer for the former (ms regime) than the latter (μs regime). A Quantum Theory of Atoms In Molecules (QTAIM) topological analysis of electron density allows the interpretation of the different nature of the emissive states of Ag(I) and Cu(I) compounds on the basis of larger shell-shared character of the Cu–N bond with respect to the Ag–N one.

Graphical abstract: Ag(i) and Cu(i) cyclic-triimidazole coordination polymers: revealing different deactivation channels for multiple room temperature phosphorescences

Supplementary files

Article information

Article type
Research Article
Submitted
20 Nov 2020
Accepted
19 Dec 2020
First published
21 Dec 2020

Inorg. Chem. Front., 2021,8, 1312-1323

Ag(I) and Cu(I) cyclic-triimidazole coordination polymers: revealing different deactivation channels for multiple room temperature phosphorescences

D. Malpicci, E. Lucenti, A. Forni, D. Marinotto, A. Previtali, L. Carlucci, P. Mercandelli, C. Botta, S. Righetto and E. Cariati, Inorg. Chem. Front., 2021, 8, 1312 DOI: 10.1039/D0QI01377C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements