A fluidized electrocatalysis approach for ammonia synthesis using oxygen vacancy-rich Co3O4 nanoparticles†
Abstract
We report a fluidized electrocatalysis system, composed of metallic titanium (Ti) mesh as the current collector and an aqueous ultrafine Co3O4 nanoparticle (NP) catalyst fabricated by the laser ablation in liquid (LAL) technique, for the efficient electrocatalytic nitrogen reduction reaction (NRR) to ammonia (NH3) synthesis. The results indicated that utilizing this fluidized electrocatalysis system, the LAL-fabricated ultrafine Co3O4 NPs highly dispersed in 0.1 M Na2SO4 solution (pH = 10.5) exhibit high NRR activity, affording an NH3 yield rate of 235.0 μg h−1 mgcat.−1 and a faradaic efficiency (FE) of 16.3% at −0.30 V (vs. RHE). The superior NRR performance can be ascribed to the fluidized electrocatalysis approach to take full advantage of the exposed oxygen vacancies as active sites of Co3O4 NPs for N2 adsorption and activation.