Issue 12, 2021

Eu-doped ZnO quantum dots with solid-state fluorescence and dual emission for high-performance luminescent solar concentrators

Abstract

Heavy-metal-free quantum dots (QDs) are promising luminophores for luminescent solar concentrators (LSCs) because of environmental friendliness, which is essential for industrial applications. In order to keep high optical quality and inhibit aggregation-induced quenching, usually QDs can only be loaded at low concentration in a polymer optical waveguide material for LSCs, which significantly impairs the power conversion efficiency (PCE). Thus, it is a challenge to fabricate high-performance LSCs with high QD loading. Here, dual emission Eu-doped ZnO QDs with strong solid-state fluorescence are synthesized via a simple sol–gel method, which enables two characteristic photoluminescence peaks at 551 nm and 614 nm. Furthermore, Eu-doped ZnO QDs with dual fluorescence emission are for the first time reported to be applied in LSCs. The performance of LSCs can be influenced by the loading concentration of Eu-doped ZnO QDs in polyvinyl pyrrolidone (PVP) films. The obtained external optical efficiency (ηopt) of the LSCs based on Eu-doped ZnO QDs can be relatively high (4.37%) compared to the reported LSCs with a similar area when the loading concentration of Eu-doped ZnO QDs is up to 13.2% because of both their high photoluminescence intensity and dual fluorescence emission. Our results demonstrate that dual emission Eu-doped ZnO QDs with strong solid-state fluorescence are promising candidates as luminophores for LSCs.

Graphical abstract: Eu-doped ZnO quantum dots with solid-state fluorescence and dual emission for high-performance luminescent solar concentrators

Supplementary files

Article information

Article type
Research Article
Submitted
02 Feb 2021
Accepted
19 Apr 2021
First published
20 Apr 2021

Mater. Chem. Front., 2021,5, 4746-4755

Eu-doped ZnO quantum dots with solid-state fluorescence and dual emission for high-performance luminescent solar concentrators

X. Gong, H. Jiang, M. Cao, Z. Rao, X. Zhao and A. Vomiero, Mater. Chem. Front., 2021, 5, 4746 DOI: 10.1039/D1QM00178G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements