Dye-modified silica–anatase nanoparticles for the ultrasensitive fluorogenic detection of the improvised explosive TATP in an air microfluidic device†
Abstract
We describe the proof of concept of a portable testing setup for the detection of triacetone triperoxide (TATP), a common component in improvised explosive devices. The system will allow field-testing and generation of real-time results to test for TATP vapor traces in a number of different environments. It will work by recirculating the gas samples in connection to the sensing mechanism in a suitable microfluidic portable device. In this way, the system will allow controlled trapping of the analyte in the chemical sensor to afford reliable results at very low concentrations in air.