Issue 7, 2021, Issue in Progress

The influence of the synthesis conditions on the magnetic behaviour of the densely packed arrays of Ni nanowires in porous anodic alumina membranes

Abstract

The densely packed arrays of Ni nanowires of 70 nm diameter and 6–12 μm length were obtained via electrodeposition into porous alumina membranes (PAAMs) of 55–75 μm thickness. The morphology, microstructure and magnetic properties between the room and liquid-helium temperature of Ni nanowires in PAAMs have been investigated using scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry. The crystal structure of the Ni nanowires is fcc with (220) preferred orientation. The magnetic characteristics of the Ni nanowires in PAAMs were compared with the same characteristics of bulk Ni and with other researchers' data. The effect of the porous alumina membrane and the Ni nanowires synthesis conditions on the magnetic characteristics of Ni nanowire arrays has been studied. The coercivity reached more than 750 kOe and the squareness ratio up to 0.65 under the proposed optimal synthesis conditions for Ni nanowires. Magnetic parameters of the densely packed arrays of Ni nanowires allow using them in magnetic recording media, hard disk drives, storage systems and sensors. In addition, such structures are of considerable interest for basic research on nanomagnetism which is significantly different from the magnetic properties of bulk and thin films materials.

Graphical abstract: The influence of the synthesis conditions on the magnetic behaviour of the densely packed arrays of Ni nanowires in porous anodic alumina membranes

Article information

Article type
Paper
Submitted
02 Sep 2020
Accepted
13 Jan 2021
First published
21 Jan 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 3952-3962

The influence of the synthesis conditions on the magnetic behaviour of the densely packed arrays of Ni nanowires in porous anodic alumina membranes

A. Vorobjova, D. Tishkevich, D. Shimanovich, T. Zubar, K. Astapovich, A. Kozlovskiy, M. Zdorovets, A. Zhaludkevich, D. Lyakhov, D. Michels, D. Vinnik, V. Fedosyuk and A. Trukhanov, RSC Adv., 2021, 11, 3952 DOI: 10.1039/D0RA07529A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements