Issue 9, 2021

Synthesis, characterization, and CO2 adsorption properties of metal organic framework Fe-BDC

Abstract

The iron-containing Metal–Organic Frameworks (MOFs) have attracted a great deal of attention in the areas of gas separation, catalytic conversion, and drug delivery, due to their high surface area and activity, as well as the non-toxicity of iron. In this study, Fe-based MOFs using BDC ligands, MIL-101(Fe), MIL-53(Fe) and Amino-MIL-101(Fe) are synthesized by a solvothermal method and characterized by conventional methods such as BET, SEM, and TGA. Afterwards, the synthesized MOFs are investigated from the point of view of the adsorbing capability of carbon dioxide at different pressures and temperatures, and also their resistance to water and solvent. The results showed that Amino-MIL-101(Fe) achieved more CO2 adsorption than MIL-101(Fe) and MIL-53(Fe), equal to 13 mmol g−1 at 4 MP. Although MIL-53(Fe) has the best temperature resistance, around 350 °C, Amino-MIL-101(Fe) is more stable against water and ethanol and its surface area is increased from 670 to 915 m2 g−1 after washing with ethanol. The adsorption study reveals that CO2 is adsorbed not only by a physical adsorption mechanism, but also by chemisorption of acidic carbon dioxide by basic NH2 agent in the structure of Amino-MIL-101(Fe).

Graphical abstract: Synthesis, characterization, and CO2 adsorption properties of metal organic framework Fe-BDC

Article information

Article type
Paper
Submitted
01 Nov 2020
Accepted
21 Dec 2020
First published
28 Jan 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 5192-5203

Synthesis, characterization, and CO2 adsorption properties of metal organic framework Fe-BDC

H. R. Mahdipoor, R. Halladj, E. Ganji Babakhani, S. Amjad-Iranagh and J. Sadeghzadeh Ahari, RSC Adv., 2021, 11, 5192 DOI: 10.1039/D0RA09292D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements