Issue 9, 2021

Biodegradable calcium carbonate/mesoporous silica/poly(lactic-glycolic acid) microspheres scaffolds with osteogenesis ability for bone regeneration

Abstract

Sintered microsphere-based scaffolds provide a porous structure and high-resolution spatial organization control, show great potential for bone regeneration, mainly from biodegradable biomaterials including poly(lactic-glycolic acid) (PLGA). However, acidic monomer regeneration, mainly from biodegradable biomaterials including poly(lactic-glycolic acid) (PLGA). However, acidic monomers generated by PLGA degradation tend to cause tissue inflammation, which is the central issue of PLGA-based bone regeneration scaffolds development. In this work, calcium carbonate (CC)/hexagonal mesoporous silica (HMS)/PLGA sintered microsphere-based scaffolds were developed. The scaffolds possessed a three-dimensional (3D) network structure and 30–40% porosity. The degradation results indicated that CC/HMS/PLGA scaffolds could compensate for pH increased caused by PLGA acidic byproducts effectively. Degradation results showed that CC/HMS/PLGA scaffold could effectively compensate for the pH increase caused by PLGA acidic by-products. Composite CC additives can induce the increase of adhesive proteins in the environment, which is conducive to the adhesion of cells to scaffolds. Mesenchymal stem cells (MSCs) proliferation and osteogenic differentiation were evaluated by CCK-8 assay, alkaline phosphatase (ALP) activity, ALP staining, and Alizarin Red staining. The results showed that compared with HMS/PLGA scaffolds, the proliferation of MSCs cultured with CC/HMS/PLGA scaffolds was enhanced. When cultured on the CC/HMS/PLGA scaffolds, MSCs also showed significantly enhanced ALP activity and higher calcium secretion compared with the HMS/PLGA scaffolds. CC/HMS/PLGA sintered microsphere-based scaffolds provides an attractive strategy for bone repair and regeneration with better performance.

Graphical abstract: Biodegradable calcium carbonate/mesoporous silica/poly(lactic-glycolic acid) microspheres scaffolds with osteogenesis ability for bone regeneration

Article information

Article type
Paper
Submitted
24 Nov 2020
Accepted
18 Jan 2021
First published
29 Jan 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 5055-5064

Biodegradable calcium carbonate/mesoporous silica/poly(lactic-glycolic acid) microspheres scaffolds with osteogenesis ability for bone regeneration

W. Xu, R. Zhao, T. Wu, G. Li, K. Wei and L. Wang, RSC Adv., 2021, 11, 5055 DOI: 10.1039/D0RA09958A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements