Electrochemical immunosensor based on mussel inspired coating for simultaneous detection and elimination of Staphylococcus aureus in drinks
Abstract
Staphylococcus aureus (S. aureus) is one of the most commonly isolated foodborne pathogens, and is considered as a major cause of foodborne illnesses worldwide. However, the development of smart and accurate analytical methods for the simultaneous detection and elimination of S. aureus in matrices of food or drinks remains challenging. In the present work, a mussel-inspired material, ε-poly-L-lysine-3,4-dihydroxy benzaldehyde (EPD), was designed and fabricated based on its Schiff base structure. Owing to the robust ability of the material to adhere onto wet electrode surfaces and the pH-responsive properties of EPD, the prepared immunosensor exhibited an excellent detection limit and linear range with on-demand antibacterial activity. In real milk samples, the average values obtained from the immunosensor were approximate to the standard results obtained from the plate count method, and the relative standard deviation was 3.16–6.54%, suggesting the good accuracy of the developed method. Moreover, it exhibited good selectivity, reproducibility, and stability, thus demonstrating the potential significant applications of the electrochemical immunosensor in drinks safety monitoring.