Issue 12, 2021, Issue in Progress

Structures and impact strength variation of chemically crosslinked high-density polyethylene: effect of crosslinking density

Abstract

Impact strength of high-density polyethylene (HDPE), especially at low temperature, is crucial for its applications outdoors because of its poor impact strength. In order to improve the impact strength of HDPE, crosslinked HDPE was prepared by the addition of a peroxide crosslink agent, bis(tert-butyldioxyisopropyl)benzenehexane, and the effect of the crosslinking density on the microstructures and mechanical properties, especially impact strength between −60 °C and 23 °C, were investigated. The results show that the crosslinking density is controlled by varying the content of the crosslinking agent. It is found that, at room temperature, with increase in the content of crosslink agent from 0% to 0.5–0.7%, the impact strength increases from 4 kJ m−2 to about 80 kJ m−2 and the elongation at break increases from 20% to about 550%. With further increase in the content of crosslink agent to 1.5%, the impact strength and the elongation at break reduce to 64 kJ m−2 and 360% respectively. With increase in crosslink agent, the flexural modulus, yield strength, crystallinity, mean lamellar thickness, crystal size and spherulitic size and the brittle–ductile transition temperature (BDTT) decrease, and the gel content, impact strength of the HDPE at low temperature, intensity of β transition increase significantly. In considering both the room temperature mechanical properties and low temperature impact strength, the optimized content of the crosslink agent is about 0.7%. Overall, crosslinking significantly improves the toughness and impact strength of HDPE and extends its application, especially at low temperature.

Graphical abstract: Structures and impact strength variation of chemically crosslinked high-density polyethylene: effect of crosslinking density

Article information

Article type
Paper
Submitted
09 Dec 2020
Accepted
30 Jan 2021
First published
10 Feb 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 6791-6797

Structures and impact strength variation of chemically crosslinked high-density polyethylene: effect of crosslinking density

Y. Ren, X. Sun, L. Chen, Y. Li, M. Sun, X. Duan and W. Liang, RSC Adv., 2021, 11, 6791 DOI: 10.1039/D0RA10365A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements