Issue 15, 2021, Issue in Progress

Pseudo in situ construction of high-performance thermoelectric composites with a dioxothiopyrone-based D–A polymer coating on SWCNTs

Abstract

Organic polymer/inorganic particle composites with thermoelectric (TE) properties have witnessed rapid progress in recent years. Nevertheless, both development of novel polymers and optimization of compositing methods remain highly desirable. In this study, we first demonstrated a simulated in situ coagulation strategy for construction of high-performance thermoelectric materials by utilizing single-walled carbon nanotubes (SWCNTs) and a new D–A polymer TPO-TTP12 that was synthesized via incorporating dioxothiopyrone subunit into a polymeric chain. It was proven that the preparation methods have a significant influence on thermoelectric properties of the TPO-TTP12/SWCNT composites. The in situ prepared composite films tend to achieve much better thermoelectric performances than those prepared by simply mixing the corresponding polymer with SWCNTs. As a result, the in situ compositing obtains the highest Seebeck coefficient of 66.10 ± 0.05 μV K−1 at the TPO-TTP12-to-SWCNT mass ratio of 1/2, and the best electrical conductivity of up to 500.5 ± 53.3 S cm−1 at the polymer/SWCNT mass ratio of 1/20, respectively; moreover, the power factor for the in situ prepared composites reaches a maximum value of 141.94 ± 1.47 μW m−1 K−2, far higher than that of 104.68 ± 0.86 μW m−1 K−2 for the by-mixing produced composites. This indicates that the dioxothiopyrone moiety is a promising building block for constructing thermoelectric polymers, and the simulated in situ compositing strategy is a promising way to improve TE properties of composite materials.

Graphical abstract: Pseudo in situ construction of high-performance thermoelectric composites with a dioxothiopyrone-based D–A polymer coating on SWCNTs

Supplementary files

Article information

Article type
Paper
Submitted
18 Dec 2020
Accepted
10 Feb 2021
First published
24 Feb 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 8664-8673

Pseudo in situ construction of high-performance thermoelectric composites with a dioxothiopyrone-based D–A polymer coating on SWCNTs

W. Qu, C. Gao, P. Zhang, X. Fan and L. Yang, RSC Adv., 2021, 11, 8664 DOI: 10.1039/D0RA10625A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements