Issue 20, 2021, Issue in Progress

Effects of an additive (hydroxyapatite–bentonite–biochar) on Cd and Pb stabilization and microbial community composition in contaminated vegetable soil

Abstract

A two-year pot experiment was conducted with a pimiento–celery cabbage (Capsicum annuum L.–Brassica pekinensis) rotation in acidic soil contaminated with Cd and Pb, which was amended with 0.0, 1.0, 2.5, 5.0 and 10.0% (w/w) premixtures of hydroxyapatite, bentonite and biochar combinations (HTB, in a ratio of 1 : 2 : 2). The results showed that the application of HTB at 2.5–10.0% significantly increased soil pH and organic carbon by an average of 10.38–17.60% and 35.60–55.34% during the two years, respectively. Compared to the control treatment, 1.0–10.0% HTB decreased the available Cd and Pb concentrations by 40.92–77.53% and 41.60–82.79% on average, respectively. In addition, the diversity and richness of the soil bacterial community improved after the two-year application of HTB. The relative abundances of Acidobacteria, Bacteroidetes and Chloroflexi increased under the HTB treatments, while those of Proteobacteria and Actinobacteria decreased. Redundancy analysis (RDA) and regression analysis indicated that soil pH and Cd and Pb availability were important factors shaping the soil bacterial community. The Cd and Pb concentrations in the edible parts of pimiento and celery cabbage decreased as the HTB application rate increased and met the Food Quality Standard in each season when the HTB application rate was 5.0% or higher. Higher rates of HTB (5.0% and 10.0%) not only ensured the quality of vegetables, but also significantly promoted pimiento and celery cabbage growth. Overall, these results indicated that the application of HTB, especially at a rate of 5.0%, could be an effective way to immobilize Cd and Pb, improve soil quality and ensure vegetables produced in acidic contaminated soil are safe for human consumption.

Graphical abstract: Effects of an additive (hydroxyapatite–bentonite–biochar) on Cd and Pb stabilization and microbial community composition in contaminated vegetable soil

Supplementary files

Article information

Article type
Paper
Submitted
22 Jan 2021
Accepted
19 Mar 2021
First published
26 Mar 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 12200-12208

Effects of an additive (hydroxyapatite–bentonite–biochar) on Cd and Pb stabilization and microbial community composition in contaminated vegetable soil

D. Zhang, T. Li, A. Ding and X. Wu, RSC Adv., 2021, 11, 12200 DOI: 10.1039/D1RA00565K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements