Issue 21, 2021, Issue in Progress

The homogeneous gas-phase formation mechanisms of PCPTs/PCDTs/PCDFs from the radical/radical cross-condensation of 2-CPR and 2-CTPR: a theoretical, mechanistic and kinetics study

Abstract

Polychlorinated phenoxathiins (PCPTs) are one group of dioxin-like compounds, which can be considered to be one-oxygen-substituted polychlorinated thianthrene (PCTA) compounds or one-sulfur-substituted polychlorinated dibenzo-p-dioxin (PCDD) compounds. Owing to their high toxicity and wide distribution, clarifying the formation and emission of PCPTs due to combustion and thermal processes can deepen our understanding of the dioxin formation mechanism and allow reduced-emission and dioxin-control strategies to be established. Chlorophenols (CPs) and chlorothiophenols (CTPs) are direct precursors in PCPT formation. In this paper, the homogeneous gas-phase formation mechanisms of PCPTs, as well as polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzothiophenes (PCDTs), from the cross-condensation of 2-chlorophenoxy radicals (2-CPRs) and 2-chlorothiophenoxy radicals (2-CTPRs) under thermal and combustion conditions were investigated theoretically using a density functional theory (DFT) method. The reaction priorities and effects of water molecules on the formation mechanisms were discussed. The rate constants of crucial elementary steps were calculated from 600–1200 K. The acute and chronic toxicities of the main products were predicted at three trophic levels. This study shows that routes starting with oxygen–carbon condensation are favored over those starting with sulfur–carbon condensation for PCPT formation, and routes ending with Cl loss can occur more easily than those ending with H loss. Water molecules have a negative catalytic effect on CH–S H-transfer steps but a positive catalytic effect on CH–O H-transfer steps.

Graphical abstract: The homogeneous gas-phase formation mechanisms of PCPTs/PCDTs/PCDFs from the radical/radical cross-condensation of 2-CPR and 2-CTPR: a theoretical, mechanistic and kinetics study

Supplementary files

Article information

Article type
Paper
Submitted
22 Jan 2021
Accepted
18 Mar 2021
First published
31 Mar 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 12626-12640

The homogeneous gas-phase formation mechanisms of PCPTs/PCDTs/PCDFs from the radical/radical cross-condensation of 2-CPR and 2-CTPR: a theoretical, mechanistic and kinetics study

Y. Li, Y. Han, Z. Teng, X. Zhao, Y. Sun, F. Xu, Q. Zhang and W. Wang, RSC Adv., 2021, 11, 12626 DOI: 10.1039/D1RA00599E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements