Issue 41, 2021, Issue in Progress

High pressure polymorphism of LiBH4 and of NaBH4

Abstract

The pressure-induced structural changes in LiBH4 and in NaBH4 have been investigated experimentally up to 290 GPa by coupling Raman spectroscopy, infrared absorption spectroscopy and synchrotron X-ray diffraction. This data set is also analysed in the light of Density Functional Theory calculations performed up to 600 GPa. The [BH4] unit appears to be remarkably resistant under pressure. NaBH4 remains stable in the known Pnma γ-phase up to 200 GPa and calculations predict a transition to a metallic polymeric C2/c phase at about 480 GPa. LiBH4 is confirmed to exhibit a richer polymorphism. A new Pnma orthorhombic phase VI is found to be stable above 60 GPa and there are hints of a possible phase VII above 160 GPa. DFT calculations predict that two other high pressure LiBH4 phases should appear at about 290 and 428 GPa. A very slight solubility of H2 inside phases II, III and V of LiBH4 is observed. A NaBH4(H2)0.5 complex is predicted to be stable above 150 GPa.

Graphical abstract: High pressure polymorphism of LiBH4 and of NaBH4

Supplementary files

Article information

Article type
Paper
Submitted
30 Jan 2021
Accepted
08 Jul 2021
First published
21 Jul 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 25274-25283

High pressure polymorphism of LiBH4 and of NaBH4

A. Marizy, G. Geneste, G. Garbarino and P. Loubeyre, RSC Adv., 2021, 11, 25274 DOI: 10.1039/D1RA00816A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements