Engineering tunability through electro-optic effects to manifest a multifunctional metadevice†
Abstract
Ultrafast modulation of the refractive index exhibits either linear or nonlinear electro-optic (EO) effect, which is extensively utilized in tunable photonic circuits. Silicon, a mature material for on-chip devices, lacks a strong electro-optic (EO) Pockels effect. Utilization of the Pockels effect alters the intrinsic property (refractive index) of the material that manifests tunability and offers expanded functionalities. Driven by the limited space constraints in data storage, sensing, and imaging applications, we propose an electrically tunable meta-device whose resonance wavelength and focal length can be tuned by varying applied electric fields in the visible range. The fundamental unit of a metalens is the barium titanate (BTO) diffractive optical element placed on indium titanium oxide (which serves as an electrode) with SiO2 as the substrate. The metalens' tunability is characterized by point spread function (PSF), full-width half-maximum (FWHM), and imaging bandwidth that demonstrates the tuning of resonance wavelength and focal length. Moreover, polarization-insensitive meta-holograms are realized at a wavelength of 633 nm without utilizing propagation and Pancharatnam–Berry (PB) phase. The proposed study can find exciting applications in machine vision, broadband microscopy, and spectroscopy.