Preparation of surface molecularly imprinted polymer and its application for the selective extraction of teicoplanin from water†
Abstract
In this study, a new surface molecularly imprinted polymer (SMIP) of teicoplanin (TEC) was prepared in an aqueous solution using amino-modified silica gel as a carrier. The molar ratio of the template molecule, functional monomer and cross-linker in the optimized synthesis system was 1 : 15 : 40. The structure and morphology of SMIP were characterized by Fourier-transform infrared spectra and scanning electron microscopy, respectively. It was shown that the silica gel modified with different active groups; the type and structure of functional monomers have a great influence on the specificity of SMIP. The SMIPs synthesized from a series of methacrylic acid and its hydroxylalkyl esters as functional monomers have good specificity for TEC. The results of static adsorption experiments showed that the adsorption capacity of SMIP was 6.5 times that of non-molecularly imprinted polymer, which were 152.6 mg g−1 and 23.6 mg g−1, respectively, indicating that SMIP had a larger affinity for TEC. Finally, the SMIP was successfully used as a dispersive solid-phase extraction adsorption material to selectively extract and enrich TEC from the water sample. The limit of detection of the proposed liquid chromatographic method for TEC was 5 μg L−1.