Issue 22, 2021

A study of starch content detection and the visualization of fresh-cut potato based on hyperspectral imaging

Abstract

Fresh-cut potatoes are popular with consumers because of their healthiness, hygiene, and convenience. Currently, starch content is mainly detected using chemical methods, which are time-consuming and laborious. Moreover, these methods may cause some side effects in the human body. Therefore, suitable methods are required for the rapid and accurate detection of starch content. In this study, Zihuabai and Atlantic potatoes were used as experimental samples. The potatoes were sliced with stainless-steel blades, and images of these potatoes were obtained through hyperspectral imaging. The images were preprocessed using different methods. Competitive adaptive reweighed sampling (CARS) and the successive projection algorithm (SPA) were used to extract characteristic wavelengths. A partial least squares regression (PLSR) model was constructed to predict the starch content from the preprocessed full spectrum and the spectrum under the characteristic wavelength. The results indicate that the full spectrum model constructed through standard normal variable transformation (SNV) preprocessing had the best performance, with a correlation coefficient in the calibration set (Rc) value of 0.9020, a root mean square error of correction (RMSEC) of 2.06, and a residual prediction deviation (RPD) of 2.33. The characteristic wavelength-based multivariate scattering correction (MSC)-CARS-PLSR model exhibited better performance than the PLSR model constructed using the full spectrum, with an Rc value of 0.9276, RMSEC of 1.76, correlation coefficient in the prediction set (Rp) value of 0.9467, root mean square error of prediction of 1.63, and RPD of 2.95. The starch content in fresh-cut potatoes was visualized using the best model in combination with pseudocolor technology. The results indicate that hyperspectral imaging is effective for mapping the spatial distribution of starch content; thus, a solid theoretical basis is obtained for the grading and online monitoring of fresh-cut potato slices.

Graphical abstract: A study of starch content detection and the visualization of fresh-cut potato based on hyperspectral imaging

Article information

Article type
Paper
Submitted
06 Feb 2021
Accepted
28 Mar 2021
First published
13 Apr 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 13636-13643

A study of starch content detection and the visualization of fresh-cut potato based on hyperspectral imaging

F. Wang, C. Wang and S. Song, RSC Adv., 2021, 11, 13636 DOI: 10.1039/D1RA01013A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements