Issue 27, 2021, Issue in Progress

Cytotoxicity and cell imaging of six types of carbon nanodots prepared through carbonization and hydrothermal processing of natural plant materials

Abstract

In this study we prepared six types of carbon nanodots (CNDs) from natural plant materials – through carbonization of two species of bamboo (Bamboo-I, Bamboo-II) and one type of wood (Wood), and through hydrothermal processing of the stem and root of the herb Mahonia oiwakensis Hayata (MO) and of the agricultural waste of two species of pineapple root (PA, PB). The resulting CNDs were spherical with dimensions on the nanoscale (3–7 nm); furthermore, CND-Bamboo I, CND-Wood, CND-Bamboo II, CND-MO, CND-PA, and CND-PB displayed fluorescence quantum yields of 9.63, 12.34, 0.90, 10.86, 0.35, and 0.71%, respectively. X-ray diffraction revealed that the carbon nanostructures possessed somewhat ordered and disordered lattices, as evidenced by broad signals at values of 2θ between 20 and 30°. CND-Bamboo I, CND-Wood, and CND-Bamboo II were obtained in yields of 2–3%; CND-MO, CND-PA, and CND-PB were obtained in yields of 17.64, 9.36, and 22.47%, respectively. Cytotoxicity assays for mouse macrophage RAW264.7 cells treated with the six types of CNDs and a commercial sample of Ag nanoparticles (NPs) revealed that each of our CNDs provided a cell viability of 90% at 2000 μg mL−1, whereas it was only 20% after treatment with the Ag NPs at 62.5 μg mL−1. The six types of CNDs also displayed low cytotoxicity toward human keratinocyte HacaT cells, human MCF-7 breast cancer cells, and HT-29 colon adenocarcinoma cells when treated at 500 μg mL−1. Moreover, confocal microscopic cell imaging revealed that the fluorescent CND-Bamboo I particles were located on the MCF-7 cell membrane and inside the cells after treatment for 6 and 24 h, respectively. We have thoroughly investigated the photoluminescence properties and carbon nanostructures of these highly dispersed CNDs. Because of the facile green synthesis of these six types of CNDs and their sourcing from abundant natural plants, herbs, and agriculture waste, these materials provide a cost-effective method, with low cytotoxicity and stable fluorescence, for biolabeling and for developing cell nanocarriers.

Graphical abstract: Cytotoxicity and cell imaging of six types of carbon nanodots prepared through carbonization and hydrothermal processing of natural plant materials

Article information

Article type
Paper
Submitted
18 Feb 2021
Accepted
29 Apr 2021
First published
07 May 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 16661-16674

Cytotoxicity and cell imaging of six types of carbon nanodots prepared through carbonization and hydrothermal processing of natural plant materials

Y. Chen, W. Jiang, H. Chen, H. Huang, G. Huang, H. Chiang, C. Chang, C. Huang and T. Juang, RSC Adv., 2021, 11, 16661 DOI: 10.1039/D1RA01318A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements