Issue 31, 2021, Issue in Progress

Optimizing energy harvesting performance of silicone elastomers by molecular grafting of azobenzene to the macromolecular network

Abstract

The dielectric elastomer generator (DEG) has attracted significant attention in the past decade for harvesting energy from reciprocating mechanical motion owing to its variable capacitance under tension. However, the challenge of conceiving novel DEGs with high energy harvesting performance should be addressed. In this work, azobenzene molecules with strong polarity were synthesized and chemically grafted onto a hydroxyl-terminated polydimethylsiloxane (PDMS) network through a simple one-step process, offering a robust, molecularly homogenous silicone rubber. In addition, dimethyl silicone oil (DMSO) plasticizer was simultaneously added to reduce the mechanical modulus of the composite. The loading content of DMSO was firstly optimized in terms of the mechanical and dielectric properties of the resultant azo-g-PDMS/DMSO elastomers. Then, the effects of azobenzene loading on the morphology, and mechanical, dielectric and electric generation performances were thoroughly investigated. Overall, the dielectric permittivity displayed a rising trend with the increase of the azobenzene content while the breakdown strength increased initially and then decreased. The breakdown strength could reach as high as 73 V μm−1 by grafting with 7 phr of azobenzene while maintaining a relatively low mechanical modulus. Meanwhile, the as-prepared azo-g-PDMS/DMSO films exhibited enhanced energy harvesting density (0.69 mJ cm−3) and electromechanical conversion efficiency (5.01%) at a bias voltage of 1500 V, which were 2 and 2.5 times as much as those of the azobenzene-free matrix. This work provides ideas for future applications of DEG with high energy harvesting performance.

Graphical abstract: Optimizing energy harvesting performance of silicone elastomers by molecular grafting of azobenzene to the macromolecular network

Article information

Article type
Paper
Submitted
22 Feb 2021
Accepted
19 May 2021
First published
26 May 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 19088-19094

Optimizing energy harvesting performance of silicone elastomers by molecular grafting of azobenzene to the macromolecular network

M. Gong, F. Song, H. Li, X. Lin, J. Wang, L. Zhang and D. Wang, RSC Adv., 2021, 11, 19088 DOI: 10.1039/D1RA01433A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements