Issue 45, 2021

Novel sulphonic acid liquid crystal derivatives: experimental, computational and optoelectrical characterizations

Abstract

A novel liquid crystal homologous series based on the benzene sulphonic acid moiety, namely (E)-4-((4-((4-(alkoxy)benzoyl)oxy)benzylidene)amino)benzenesulfonic acid (Sn), was synthesized and examined via different experimental and theoretical measurements. The four synthesized members have terminally connected alkoxy chain groups, which vary between 6 and 12 carbons. FT-IR and NMR spectroscopy, as well as elemental analyses, were used to confirm their molecular structures. Mesomorphic and optical investigations of the prepared homologues were also conducted using differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The DSC and POM characterization revealed that all of the synthesized sulphonic acid members are monomorphic, exhibiting a pure smectic A (SmA) mesophase with enantiotropic properties. Moreover, all compounds in the group have high thermal transition temperatures. The terminal electron-withdrawing group –SO3H plays a considerable role in the stabilization of the molecule, which in return resulted in high thermal SmA stability. Furthermore, the experimental data relating to the mesophase behavior were substantiated via computational studies using the DFT approach. In addition, the terminal –SO3H moiety has an essential impact on the thermal and physical parameters of possible geometries. All members of the synthesized Sn series exhibit ohmic behavior with electrical resistance in the GΩ range, as revealed by electrical measurements. The S10 electrode had the highest electrical conductivity: 35.16 pS. It also showed two direct optical band gaps of 3.58 and 3.23 eV with Urbach energies of 1261.1 and 502.4 meV. Upon decreasing the number of carbon atoms to n = 6, the main bandgap for S6 reduced to 3.3 eV. The highest conductivity, good absorption, and two large bandgaps recorded for the chain derivative S10 make it suitable for investigations relating to energy-based applications.

Graphical abstract: Novel sulphonic acid liquid crystal derivatives: experimental, computational and optoelectrical characterizations

Supplementary files

Article information

Article type
Paper
Submitted
30 Mar 2021
Accepted
21 Jul 2021
First published
17 Aug 2021
This article is Open Access
Creative Commons BY license

RSC Adv., 2021,11, 27937-27949

Novel sulphonic acid liquid crystal derivatives: experimental, computational and optoelectrical characterizations

L. A. Alshabanah, L. A. Al-Mutabagani, S. M. Gomha, H. A. Ahmed, S. A. Popoola and M. Shaban, RSC Adv., 2021, 11, 27937 DOI: 10.1039/D1RA02517A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements