A GGA + U investigation into the effects of cations on the electromagnetic properties of transition metal spinels†
Abstract
Spinel oxides are promising low-cost catalysts with manifold and controllable physicochemical properties. Trial and error strategies cannot achieve the effective screening of high-performance spinel catalysts. Therefore, unraveling the structure–performance relationship is the foundation for their rational design. Herein, the effects of cations in tetrahedral and octahedral sites on the electronic structures of spinels were systematically investigated using GGA + U calculations based on ACr2O4 (A = Mn, Fe, Co, Ni, and Zn) and Zn/LiB2O4 (B = Cr, Mn, Fe, Co and Ni). The results indicate that the octahedrally coordinated B cations have notable influence on the electronic structures of spinels. The Jahn–Teller active ions Fe2+, Ni2+, Mn3+, Ni3+, Cr4+ and Fe4+ can remarkably reduce the band gaps of spinels and even change their electroconductibilities. These results will provide theoretical insights into the electronic properties of 3d transition metal spinels.