Issue 38, 2021, Issue in Progress

SILP materials based on TiO2–SiO2 and TiO2–SiO2/lignin supports as new catalytic materials for hydrosilylation reaction – synthesis, physicochemical characterization and catalysis

Abstract

The oxide system TiO2–SiO2 as well as a TiO2–SiO2/lignin system have been obtained by the sol–gel synthesis method and applied as supports in Supported Ionic Liquid Phase (SILP) materials. In total 24 SILP systems were obtained with ionic liquids containing imidazolium, pyridinium, phosphonium or sulfonic cations and bis(trifluoromethylsulfonyl)imide or methylsulfate anions, and homogeneous complexes of rhodium or platinum as the active phase. The supports and catalytic materials were subjected to thorough characterization by elemental analysis, XRD, SEM-EDX, IR, and TGA, and their particle size distribution and porous properties were assessed. The new SILP materials were used in hydrosilylation of 1-octene with 1,1,1,3,5,5,5-heptamethyltrisiloxane. The effectiveness of hydrosilylation reaction catalyzed by the obtained SILP materials for the polar and nonpolar reagents was assessed. All the catalytically active materials were proved to be easy to isolate and reuse, and the best SILP systems have been shown to be active in 10 or more subsequent catalytic cycles.

Graphical abstract: SILP materials based on TiO2–SiO2 and TiO2–SiO2/lignin supports as new catalytic materials for hydrosilylation reaction – synthesis, physicochemical characterization and catalysis

Supplementary files

Article information

Article type
Paper
Submitted
21 May 2021
Accepted
25 Jun 2021
First published
01 Jul 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 23355-23364

SILP materials based on TiO2–SiO2 and TiO2–SiO2/lignin supports as new catalytic materials for hydrosilylation reaction – synthesis, physicochemical characterization and catalysis

O. Bartlewicz, M. Pietrowski, M. Kaczmarek and H. Maciejewski, RSC Adv., 2021, 11, 23355 DOI: 10.1039/D1RA03966K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements