Issue 44, 2021

Photocatalytic degradation of ibuprofen using titanium oxide: insights into the mechanism and preferential attack of radicals

Abstract

The present work studied ibuprofen degradation using titanium dioxide as a photocatalyst. Mechanistic aspects were presented and the preferred attack sites by the OH˙ radical on the ibuprofen molecule were detailed, based on experimental and simple theoretical-computational results. Although some previous studies show mechanistic proposals, some aspects still need to be investigated, such as the participation of 4-isobutylacetophenone in the ibuprofen degradation and the preferred regions of attack by OH˙ radicals. The photodegradation was satisfactory using 0.03 g of TiO2 and pH = 5.0, reaching 100% decontamination in 5 min. The zeta potential curve showed the regions of attraction and repulsion between TiO2 and ibuprofen, depending on the pH range and charge of the species, influencing the amount of by-products formed. Different by-products have been identified by GC-MS, such as 4-isobutylacetophenone. Ibuprofen conversion to 4-isobutylacetophenone takes place through decarboxylation reaction followed by oxidation. The proposed mechanism indicates that the degradation of ibuprofen undergoes a series of elementary reactions in solution and on the surface. Three different radicals (OH˙, O2˙ and OOH˙) are produced in the reaction sequence and contribute strongly to the oxidation and mineralization of ibuprofen and by-products, but the hydroxyl radical has a greater oxidation capacity. The simple study using the DFT approach demonstrated that the OH˙ radical attacks preferentially in the region of the ibuprofen molecule with high electronic density, which is located close to the aromatic ring (C[double bond, length as m-dash]C bond). The presence of the OH˙ radical was confirmed through a model reaction using salicylic acid as a probe molecule.

Graphical abstract: Photocatalytic degradation of ibuprofen using titanium oxide: insights into the mechanism and preferential attack of radicals

Supplementary files

Article information

Article type
Paper
Submitted
04 Jun 2021
Accepted
05 Aug 2021
First published
16 Aug 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 27720-27733

Photocatalytic degradation of ibuprofen using titanium oxide: insights into the mechanism and preferential attack of radicals

M. O. Miranda, W. E. Cabral Cavalcanti, F. F. Barbosa, J. Antonio de Sousa, F. Ivan da Silva, S. B. C. Pergher and T. P. Braga, RSC Adv., 2021, 11, 27720 DOI: 10.1039/D1RA04340D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements