Formation mechanism of MnxCo3−xO4 yolk–shell structures†
Abstract
Formation of MnxCo3−xO4 yolk–shell microspheres via a solvothermal reaction of hydrated cobalt and manganese nitrates in ethanol is investigated. Spinel nanocrystals of cobalt oxide or cobalt-rich ternary oxide preferentially develop in the system, while manganese-rich hydroxide form Mn(OH)2-type nanosheets. Instead of continuing to grow individually, the nanocrystallites and nanosheets aggregate into large microspheres due to their strong inter-particle interaction. When the proportion of Mn-rich nanosheets is high, therefore the overall density is low, dehydration of hydroxide nanosheets and a surface re-crystallisation lead to formation of a dense and rigid shell, which is separated from a solid or hollow core via a further Ostwald ripening process. The proposed formation mechanism of the yolk–shell structures based on electron microscopic studies would help us to develop yolk–shell structure based multifunctional materials.