Issue 53, 2021

Ca(OH)2-mediated activation of peroxymonosulfate for the degradation of bisphenol S

Abstract

Alkaline substances could activate peroxymonosulfate (PMS) for the removal of organic pollutants, but relatively high alkali consumption is generally required, which can cause too high pH of the solution after the reaction and lead to secondary pollution. Within this study, PMS activated by a relatively low dosage of Ca(OH)2 (1 mM) exhibited excellent efficiency in the removal of bisphenol S (BPS). The pH of the solution declined to almost neutral (pH = 8.2) during the reaction period and conformed to the direct emission standards (pH = 6–9). In a typical case, BPS was completely degraded within 240 min and followed the kinetics of pseudo-first-order. The degradation efficiency of BPS depended on the operating parameters, such as the Ca(OH)2, PMS and BPS dosages, initial solution pH, reaction temperature, co-existing anions, humic acid (HA), and water matrices. Quenching experiments were performed to verify that singlet oxygen (1O2) and superoxide radicals (O2˙) were the predominant ROS. Degradation of BPS has been significantly accelerated as the temperature increased. Furthermore, degradation of BPS could be maintained at a high level across a broad range of pH values (5.3–11.15). The SO4, NO3 did not significantly impact the degradation of BPS, however, both HCO3 and HA inhibited oxidation of BPS by the Ca(OH)2/PMS system, and Cl had a dual-edged sword effect on BPS degradation. In addition, based on the 4 identified intermediates, 3 pathways of BPS degradation were proposed. The degradation of BPS was lower in domestic wastewater compared to other naturals waters and ultrapure; nevertheless, up to 75.86%, 77.94% and 81.48% of BPS was degraded in domestic wastewater, Yaohu Lake water and Poyang Lake water, respectively. Finally, phenolic chemicals and antibiotics, including bisphenol A, norfloxacin, lomefloxacin hydrochloride, and sulfadiazine could also be efficiently removed via the Ca(OH)2/PMS system.

Graphical abstract: Ca(OH)2-mediated activation of peroxymonosulfate for the degradation of bisphenol S

Supplementary files

Article information

Article type
Paper
Submitted
09 Jul 2021
Accepted
20 Sep 2021
First published
14 Oct 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 33626-33636

Ca(OH)2-mediated activation of peroxymonosulfate for the degradation of bisphenol S

L. Wu, Y. Lin, Y. Zhang, P. Wang, M. Ding, M. Nie, C. Yan and S. Chen, RSC Adv., 2021, 11, 33626 DOI: 10.1039/D1RA05286A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements