Issue 60, 2021, Issue in Progress

Qualitative and quantitative adsorption mechanisms of zinc ions from aqueous solutions onto dead carp derived biochar

Abstract

The objective of this study is to investigate the qualitative mechanisms of Zn2+ adsorption on carp biochars (CMBx) produced from dead carp at different temperatures (450–650 °C) and their quantitative contribution. The pseudo second order kinetic model and the Langmuir model could fit the kinetic and isothermal adsorption data well, respectively. The intra-particle diffusion was the main rate-limiting step but not the only rate-limiting step. The maximum adsorption capacity obtained from the Langmuir model for CMB650 was 87.7 mg g−1 which was greater than those of other biochars. Precipitation with minerals, ion exchange, and complexation with functional groups (OFGs) were the main adsorption mechanisms. Quantum chemistry calculations confirmed that the functional groups (e.g., hydroxyl, carboxyl and C[double bond, length as m-dash]C) tended to bind with Zn2+ more strongly than with Ca2+ and Mg2+, because the structure of the complex formed by the former was more stable. The contribution of different adsorption mechanisms varied with the pyrolysis temperature to prepare biochar. With increasing pyrolysis temperature, the contribution of the interaction between Zn2+ and the minerals increased from 46.4% to 84.7%, while that of complexation with OFGs decreased from 41.7% to 4.7%. Overall, the mechanism of Zn2+ adsorption on CMB450 was dominated by complexation with OFGs and exchange with cations (accounting for 73.2%), while the mechanisms on CMB650 were dominated by the interaction with minerals. In view of the total adsorption capacity, 650 °C was the optimized pyrolysis temperature for CMBx preparation and adsorption treatment of Zn-contaminated water. These results are useful for screening effective biochars as engineered sorbents to treat Zn-containing wastewater.

Graphical abstract: Qualitative and quantitative adsorption mechanisms of zinc ions from aqueous solutions onto dead carp derived biochar

Supplementary files

Article information

Article type
Paper
Submitted
23 Jul 2021
Accepted
23 Nov 2021
First published
29 Nov 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 38273-38282

Qualitative and quantitative adsorption mechanisms of zinc ions from aqueous solutions onto dead carp derived biochar

H. Qiao, Y. Qiao, X. Luo, B. Zhao and Q. Cai, RSC Adv., 2021, 11, 38273 DOI: 10.1039/D1RA05636K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements