Large-area growth of SnS2 nanosheets by chemical vapor deposition for high-performance photodetectors
Abstract
Two-dimensional tin disulfide (SnS2) is very popular in electronic, optoelectronic, energy storage, and conversion applications. However, the uncontrollable large-area growth of SnS2 nanosheets and unsatisfactory performance of the photodetectors based on SnS2 have hindered its applications. Here, we propose a chemical vapor deposition (CVD) method using SnCl2 as a precursor to grow SnS2 nanosheets. We found that the as-grown SnS2 nanosheets were high-quality crystal structures. Then, photodetectors based on the as-grown SnS2 were fabricated and, exhibited a high responsivity (1400 A W−1), fast response rate (a response time of 7 ms and a recovery time of 6 ms), perfect external quantum efficiency (EQE) (2.6 × 105%), and remarkable detectivity (D*) (3.1 × 1013 Jones). Our work provides a new CVD method to grow high-quality SnS2 nanosheets.