Issue 54, 2021

Combinatorial design of a sialic acid imprinted binding site exploring a dual ion receptor approach

Abstract

Aberrant sialic acid expression is one of the key indicators of pathological processes. This acidic saccharide is overexpressed in tumor cells and is a potent biomarker. Development of specific capture tools for various sialylated targets is an important step for early cancer diagnosis. However, sialic acid recognition by synthetic hosts is often complicated due to the competition for the anion binding by their counterions, such as Na+ and K+. Here we report on the design of a sialic acid receptor via simultaneous recognition of both the anion and cation of the target analyte. The polymeric receptor was produced using neutral (thio)urea and crown ether based monomers for simultaneous complexation of sialic acid's carboxylate group and its countercation. Thiourea and urea based functional monomers were tested both in solution by 1H NMR titration and in a polymer matrix system for their ability to complex the sodium salt of sialic acid alone and in the presence of crown ether. Combination of both orthogonally acting monomers resulted in higher affinities for the template in organic solvent media. The imprinted polymers displayed enhanced sialic acid recognition driven to a significant extent by the addition of the macrocyclic cation host. The effect of various counterions and solvent systems on the binding affinities is reported. Binding of K+, Na+ and NH4+ salts of sialic acid exceeded the uptake of bulky lipophilic salts. Polymers imprinted with sialic or glucuronic acids displayed a preference for their corresponding templates and showed a promising enrichment of sialylated peptides from the tryptic digest of glycoprotein bovine fetuin.

Graphical abstract: Combinatorial design of a sialic acid imprinted binding site exploring a dual ion receptor approach

Supplementary files

Article information

Article type
Paper
Submitted
17 Sep 2021
Accepted
15 Oct 2021
First published
22 Oct 2021
This article is Open Access
Creative Commons BY license

RSC Adv., 2021,11, 34329-34337

Combinatorial design of a sialic acid imprinted binding site exploring a dual ion receptor approach

L. Mavliutova, E. Verduci and B. Sellergren, RSC Adv., 2021, 11, 34329 DOI: 10.1039/D1RA06962D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements